
Modules and Innovations

Linxiao Bai
Nilesh Patil

Introduction
Spark was designed for massive parallel computation on large-scale distributed cluster. It is currently the most

popular open-source project of Apache Software Foundation, and the first choice of “big-data engine” for cluster-

computation.

Although Spark Core learns from Hadoop MapReduce framework at lower level, with extensive optimizations and

design choices, it quickly outperformed its predecessor, providing faster, more resilient, more convenient cluster-

computation experience. Also, with extensive modules and libraries like Spark SQL, Spark Streaming, GraphX,

and MLlib, it is a powerful platform to cater different computation needs, and different environments.

These powerful capabilities of Spark, understanding its key features and advantages is important for anyone who

works in data-driven fields.

Machine

User

Resource Manager File System

Objective
Our goal is to provide an overview of Apache Spark ecosystem and several key Spark modules. Including lower-

level interfaces to machine and higher-level interfaces to users.

Also, we will compare Spark with its predecessor Hadoop, and review its advantages. The intention is to provide

Spark intermediate learners with a better understanding of this powerful platform and offer a different perspective.

The resilience of Spark relies on

DAGScheduler, a process that record

the lineage of all RDD partitions.

Compared to Hadoop:

 One executor fails, all fail.

 Computation start-over.

 Relies on saving result to

HDFS.

 Huge disk I/O, waste of

communication.

 One executor fails, others move on

 Only the faulty partition needs re-

compute

 Relies on lineage to trace-back for

computing the faulty partition.

 Minimum I/O, Maximum efficiency

 Allocate help to struggling executors.

Intermediate result of computations

will not be serialized and saved to disk.

RDD stays in memory as a reusable object.

Compared to Hadoop:

 Result of map-reduce save to

disk, and make multiple copies.

 Serialization/deserialization

repetitively between computations

 Huge disk I/O, waste of

communication.

 Lazy execution, execute tasks

batch-wisely

 Result saved as reusable object

in memory for next computation.

 No serialization/deserialization.

 Minimum disk I/O. Lightning fast !

Wide-raged support includes:

 Needs to be deployed on

Hadoop cluster.

 Heartbeat-based

communication, Slow.

 Non-universal API.

 Java indigenous.

 Minimum declarations,

usually only SparkContext.

 Friendly interfaces, users

only worry about job itself.

 Parallelisms are well-

encapsulated. “WordCount”

only 5 lines of code.

Spark offers great generality for application development

and cluster deploying.

Compared to Hadoop:

Upper-level

Lower-level

 Users are responsible for details

like exception handling.

 Massive declaration before start.

 Redundant coding, similar

modules appears every time.

“WordCount” takes 120 lines

of code

 Support platforms of different

kinds and sizes. From local PC to

large-scale cluster.

 Multiple language kernels

 Universal API. Akka fast

communication.

 Powerful extensions

and libraries.

Other Extended Modules SQL
The most popular Spark extension.

Powerful relational data processing capability

 Implement DataFrame like in

Python and R

 Uses schema at each data

partition to keep track of the

relational transformation.

 Uses “Catalyst” to optimize

the query logic.

API for graphs and large scale

graph-parallel computation.

A Spark scalable

machine learning library.

API for scalable

streaming applications

Notebook like

interactive kernel

Spark encapsulates parallelism to friendly APIs.

User programs without worrying about too much details.

Compared to Hadoop:

Wide-raged support includes:

Spark-Standalone Spark-Local

Apache-Spark Ecosystem and Key Innovations

Spark Ecosystem

Extended Modules

Spark Core

Resource
Management

Distributed File
System

Spark

Core

Resilience In-Memory

Encapsulation Generality

