
 

 

An Overview of Apache Spark Ecosystem and Modules
Linxiao Bai 

Master of Science 
Goergen Institute for Data Science 

University of Rochester 

lbai2@ur.rochester.edu 

 

Nilesh Patil 
Master of Science 

Goergen Institute for Data Science 
University of Rochester 

npatil4@ur.rochester.edu

ABSTRACT 

In this paper, we provide an overview of Apache Spark ecosystem 

and related key Spark modules, including, low-level interfaces to 

machine and hive-level api interfaces for users (e.g. Spark Core & 

Spark SQL). Also, we will compare the two modules with their 

predecessors, Hadoop-MapReduce and relational DataFrame. 

Performances improvements over the precursors will also be 

studied. The idea is to extract the excellent innovation and designs 

of Spark system.  

1. INTRODUCTION 
In 2009, Netflix held a competition with $1 million for the winner. 

The competition’s aim was to get an improved approach for 

building Netflix’s recommendation engine. The huge prize amount 

attracted UC Berkley’s AMPLab, and they designed an algorithm 

based on the most popular parallel computation engine at that time, 

Hadoop. Soon the researchers realized that the bottleneck of the 

problem at hand is not just the recommendation algorithm, but the 

ineffective programming model of Hadoop for this task. With great 

ingenuity, AMPLab designed a brand-new computation engine 

called Spark. 

Although AMPLab did not win the prize in the end, Spark’s 

achievements adaptation as a multipurpose data science tool has 

gone beyond anyone’s imagination. After its first release, Spark-

0.5 in 2013, Spark went through 12 major updates. Currently, the 

most recent version is 2.1.0, and it is still the most popular open-

source project of Apache Software Foundation, and the first choice 

as big-data engine for cluster-computation[5].  

Spark was created for massive parallel computation on large-scale 

distributed cluster. Although Spark Core is a derivative of Hadoop 

MapReduce framework at basic level, with rigorous optimization 

and design changes, it quickly went beyond Hadoop’s performance, 

providing faster, more resilient and more convenient computation 

experience. Also, with extended modules and libraries like Spark 

SQL, Spark Streaming, GraphX, and MLlib, Spark extended its 

power to cater different computation needs, and adapts to different 

environments for applications in data science. 

We hope this paper will bring provide a better understanding of 

Spark ecosystem and its key innovations. We will start the paper 

with an introduction to Spark ecosystem, and move on to the 

interfaces and designs of key modules, including file-system, 

resources management, Spark Core and Spark’s extended libraries. 

2. Spark Ecosystem  
The Spark Ecosystem is also known as the AMPLab’s BDAS 

(Berkley Data Analytics Stack). It is a “big-data platform” that 

connects - users, algorithms, and machine. It provides a one stop 

solution to distributed data storage, resource management, and 

interfaces to data processing for data munging and analytics. The 

key towards understanding BDAS is its hierarchical structure and 

module dependencies. Figure-1 shows that BDAS is a structured 

collection of modules with dedicated functionalities. Together they 

form a powerful, multi-purpose big data platform.  

 

 

Figure 1. BDAS, Modules at Bottom Faces Machine, Top faces 

User and Specific Jobs.[6] 

 

Different modules at different hierarchy level of the ecosystem are 

dedicated to solve different problems for a variety of data 

processing & analytics applications. Figure 2 shows how Spark 

ecosystem connects user, machines, and algorithms. The key point  

is that Spark takes the responsbility of bridging algrithms and 

machines that are incharge of exection. At the same time, Spark 

provides a smart and user friendly interface at both ends so that 

users can work without having to worry about the effectiveness and 

robustness of distributed execution. 

 
Figure-2. Spark, User, Algorithms, and Machine 

Apart from the low-level interface to work with machines, Spark 

offers high-level APIs that provide a user-friendly environment. 

Furthermore, there are advanced modules designed for specific 

analytical tasks. Table-1 lists some of the most popular Spark 

modules in the community. We will only cover Spark SQL in the 

following section as a representative of this module system. 

 

mailto:lbai2@ur.rochester.edu
mailto:npatil4@ur.rochester.edu


 

 

Table-1. Sample list of Extended Spark Modules [7] 

Name Usage 

Spark Streaming For real-time streaming Spark applications. 

GraphX API for graph computation 

MLlib API for Spark machine learning library 

Spark R Spark interface in R 

Spark SQL SQL engine for structured data 

Zepplin Notebook-like interactive Spark interface 

GeoSpark Spatial data engine on top of Spark 

 

3. Spark Modules Analysis 
As described in the previous section, Spark ecosystem is a 

collection of modules that depend on each other, and together they 

form a powerful platform. This section will provide an independent 

analysis for key modules of Spark. Our primary focus is on Spark 

Core and Spark SQL because they not only represent Spark’s 

interface to low-level algorithms and abstractions but are also most 

frequently used tools by Spark users. 

3.1 Storage 
The relationship of storage system to a computation engine is like 

an armory to an army. Spark relies on distributed file systems to 

input data from and output results to persistent hard disks. Spark 

provides support to a wide range of storage systems. Its API 

supports main-stream file systems like HDFS, HBase, and Amazon 

S3. The polymorphism to file systems allows Spark to be adaptive 

and easy to deploy without sacrificing performance. 

3.2 Resource Management 
Resource management to a computation engine is like a 

commander to an army. Spark needs resource manager to schedule 

jobs and allocate CPU and RAM for computation across multiple 

machines. Depending on the file system and the environment, 

different choice of resource management may be deployed. For 

example, Yarn[8] is most commonly used on HDFS. The BlueHive 

cluster at University of Rochester uses SLURM[9]. 

Table-2 shows spark deployment modes and the corresponding 

resource manager used in different environments. 

 

Table 2. Spark Deployment and Environment 

Environment Mode Resource Management 

Local machine, PC Local None 

Small cluster w/o 

resource 

negotiation 

Standalone Spark-Standalone 

Big cluster Cluster YARN, Apache Mesos, 

SLURM, EC2 

3.3 Spark Core 
As the name suggests, Spark Core is the most essential part of Spark 

ecosystem. Almost every other module is either designed 

completely on top of Spark Core or implemented to extend its 

functionality. In fact, usually the references to Spark refer to the 

basic functionality provided by Spark Core. 

The game changing designs of Spark Core contain two major 

components: 

 An in-memory data abstraction object called Resilient 

Distributed Datasets (RDD) 

 A scheduler called DAGScheduler. 

3.3.1 In-memory Computation 
Unlike Hadoop MapReduce, where the result of each map-reduce 

operations is written to disk, Spark and its RDD abstraction allows 

application to cache the intermediate result of calculation in RAM 

as Java object for further computation [1]. This so called in-memory 

computation is Spark’s biggest improvement over Hadoop. The in-

memory computation makes consecutive data transformations 

easier to code - for the user and faster to implement – for the 

machine. Also, it saves the system from huge amount of disk I/O 

and serialization/deserialization cost. Benchmark experiments 

carried out by the AMPLab suggest that Spark outperforms Hadoop 

by up to 20 times in different application scenario [10].  

The experiment runs iterative machine learning algorithm with 

100GB of data. Hadoop, HadoopBinMem (an in-memory 

optimization of Hadoop), and Spark RDD are tested in this scenario. 

Results are measured as – “training time cost in seconds”. Figure-

3 shows the performance of each computation framework.  

 

 

Figure-3. Spark Performance Compared to Hadoop[10] 

Figure-3 shows a clear gain of Spark over Hadoop in computation 

time. Notice that core Hadoop shows almost constant time cost at 

every iteration, and the first iteration is guaranteed to have a disk 

output operation to load the data. The time constancy is because for 

the remaining iterations, Hadoop also reads data from the disk.  

Also, even with in-memory optimizaiton, Hadoop is still slower 

than Spark. This phenomenon is explained by the AMPLab as the 

overhead of parsing Hadoop file. Although data is stored in 

memory, but the format is not desgned for computation tasks by 

Hadoop. Extra computation is still needed to convert Hadoop file 

to Java object that can be processed with map-reduce. While Spark 

directly stores RDD as Java objects, which avoids the overhead. 

Other drawbacks of core Hadoop may also influence its 

performance. For example, the minimum overhead of Hadoop 

software stack.  



 

 

3.3.2 Resiliency 
Another distinct improvement Spark proposed is its fault recovery 

strategy, lineage using DAGScheduler. 

In Hadoop, when a map-reduce task fails at any node, everything 

in the memory is lost for that node and recomputed at another node 

i.e. the task begins anew at a different node. The resilience strategy 

of Hadoop relies on the recover mechanism of HDFS, which is 

essentially making multiple copies of all disk files and storing at 

different locations. This is also the reason why Hadoop needs to 

save its result at each step. So, when a fault occurs, Hadoop can 

load to the closest checkpoint. 

However, this resiliency mechanism has several drawbacks. First, 

it consumes huge amount of disk I/O and communication 

bandwidth when making copies of disk, which is the most 

expensive operation in parallel computation. Second, a 

computation task success means successful completion of all 

subtasks for all nodes. Should any node fail, the whole system must 

roll back and re-compute. This not only means that the chance of 

failure is multiplied because of the “bound success”, but also means 

that correct computation done by other nodes is of no use anymore. 

The lineage concept proposed in Spark fixes theese drawbacks in 

Hadoop. Lineage is formally defined as logging transformations 

used to build a RDD at coarse-grained level. As an application 

launches, DAGScheduler process will log the relationship of 

previous data and current data at partition level. When a fault at 

certain partition occurs, Spark will trace back its lineage, and find 

all the actions used to compute results from the faulty partition, and 

re-compute this portion only. While the computation results at rest 

of the partitions remain as it is. This recovery strategy is more 

advanced than Hadoop’s, and provides faster reliable computation 

experience.  

In a fault-recovery experiment AMPLab carried, performance of 

Spark RDD are evaluated under the scenario of a node failure. 

Figure 4 shows the iteration time cost at the presence of a scheduled 

node failure at 6th iteration.  

Figure 4. Performance of Spark Recovery Mechanism [10]  

Notice that recovery time at the 6 iteration is less than starting over 

the iteration. This is a good indicator that partial reconstruction of 

RDD is faster than starting over the job, which is the mechanism 

that Hadoop uses.  

Besides lineage, there are other resiliency policies used by Spark. 

For example, detecting struggling executor and allocating 

additional helper/ backup-executors to it, data locality optimization 

to reduce communication, and so on.  

3.3.3 Generality 
Another great feature of Spark RDD is the encapsulation of 

parallelism. Although Hadoop provides a rather friendly API for 

map-reduce paradigm, its execution contains massive amount of 

initialization and declaration. In the official API for Hadoop, to 

perform a WordCount, it uses 120 lines of Java code. On the other 

hand, Spark RDD API uses only 5 lines of code to achieve the same 

functionality making Spark a more suitable tool for iterative 

processes which are prevalent in analytics and data science 

applications. Besides, Spark offers customized features including 

manual in-memory check-point, flexible parallelism by 

repartitioning RDD, friendly broadcasting interfaces, and so on.  

3.4 An Example of Spark Extended Interface, 

Spark-SQL 
A compelling advantage of Spark over other distributed systems is 

its powerful libraries/modules that are designed to integrate 

algorithms or tools to solve specific problems ranging from data 

munging to machine learning. One of the most frequently used 

modules is Spark SQL, a relational processing engine based on 

Spark. 

Key features of Spark SQL can be summarized as the follows [2]: 

 Support for relational processing on RDD, external data 

sources, and structured databases 

 Provide high performance using standard DBMS 

techniques 

 Support for other modules like MLlib, GraphX etc. 

To achieve these features, Spark SQL implements two important 

APIs - DataFrame, and Catalyst. 

3.4.1 DataFrame 
Just like DataFrame abstraction in R and Python.pandas, Spark 

SQL DataFrame is a collection of rows of data with the same 

schema. In addition to the underlying RDD structure, each partition 

of the DataFrame keeps an identical structured schema. The schema 

is the key for recording relational transformation of the DataFrame. 

Also, schema will be lazy-executed and optimized by Catalyst. 

This feature is different from R and Python DataFrames, because 

their execution of DataFrame is sequential and unoptimized for any 

distributed tasks.  

Spark SQL DataFrame also provides friendly interface to perform 

relational transformations like groupby, filter, join, aggregate, and 

so on. Besides that, it supports RDD operations like map, row-wise 

transformations and other non-relational operations. Figure-5 

shows an example of structured query using Spark SQL.  

 

 

Figure-5. Count Number of Female Employee by Department 

Using Spark SQL 



 

 

3.4.2 Catalyst 
As most DBMS optimize the logic of structured query. Spark SQL 

optimizes its execution through a rule-based extensible logic 

optimizer called Catalyst.  

Catalyst uses functional programming constructs in Scala language 

and a tree-like structure to recognize the logic in input query. Then 

it uses saved rules to optimize the logic.  

The structured query in Figure-5 can be optimized by switching 

“where” clause and “join” clause. It will reduce the cross-reference 

burden by filtering the table. Simple optimizations like this will be 

captured by Catalyst, so user can focus on completing the job 

without worrying about optimizing their code [4]. 

The tree-like logic structure and extensible ability allows Catalyst 

to be easily maintained and updated. Figure-6 shows a simple logic 

expression x+(1+2) and how it looks like in a Catalyst tree.  

 

Figure-6. Catalyst Tree of x+(1+2) [11] 

Each node of the tree is an immutable Scala object that can be 

transformed by tree class functions. This design allows the tree to 

be manipulated by embedded rules that manipulate nodes and 

corresponding logic to the tree. This process is how Catalyst 

optimizes an input logic structure. For example, optimization of 

expression in Figure-6 will result in the combination of Literal 1 

and Literal 2, and the two nodes will be merged. To an additive 

result of (1+2=3). By adding cases and rules to the embedded 

transform function, Catalyst can be updated and used for 

customized scenario [3]. 

3.4.3 Spark SQL Execution Plan 
A general process for how Spark SQL executes a user input can be 

represented as Figure-7. 

 

 

Figure-7. Spark SQL Execution Plan [11] 

In the input-phase, Spark SQL takes in the query instruction and 

related data. Then, it uses its embedded SQL parser or HiveQL 

parser to parse/ covert the query into logical steps. During the 

optimization phase, Spark SQL constructs a Catalyst tree for the 

input logic, and uses its embedded rules to perform optimization 

transforms on the tree. Finally, during the execution phase, logic 

plan is transformed to physical plan that carries the code to actual 

execution and returns the result to user. 

4. Summary 
This paper gives an overview of Apache Spark ecosystem, and its 

key modules. Starting from its interface to machine, we listed its 

supported platforms of storages and resource management. Then 

we cover its higher-level interfaces, Spark Core and Spark SQL. 

For these two modules, we explain their core design choices, and 

provide thorough analysis of the concept and its implementation in 

Spark. Comparison to their predecessors is also provided based on 

both benchmarked tests and design choices. 

In general, the paper provides an elementary-intermediate level 

summary to major components of Spark. Although other popular 

modules like Spark Streaming, MLlib are not covered, the paper 

could be useful to Spark application developer and intermediate 

Spark learners. 
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