

An Overview of Apache Spark Ecosystem and Modules
Linxiao Bai

Master of Science
Goergen Institute for Data Science

University of Rochester

lbai2@ur.rochester.edu

Nilesh Patil
Master of Science

Goergen Institute for Data Science
University of Rochester

npatil4@ur.rochester.edu

ABSTRACT

In this paper, we provide an overview of Apache Spark ecosystem

and related key Spark modules, including, low-level interfaces to

machine and hive-level api interfaces for users (e.g. Spark Core &

Spark SQL). Also, we will compare the two modules with their

predecessors, Hadoop-MapReduce and relational DataFrame.

Performances improvements over the precursors will also be

studied. The idea is to extract the excellent innovation and designs

of Spark system.

1. INTRODUCTION
In 2009, Netflix held a competition with $1 million for the winner.

The competition’s aim was to get an improved approach for

building Netflix’s recommendation engine. The huge prize amount

attracted UC Berkley’s AMPLab, and they designed an algorithm

based on the most popular parallel computation engine at that time,

Hadoop. Soon the researchers realized that the bottleneck of the

problem at hand is not just the recommendation algorithm, but the

ineffective programming model of Hadoop for this task. With great

ingenuity, AMPLab designed a brand-new computation engine

called Spark.

Although AMPLab did not win the prize in the end, Spark’s

achievements adaptation as a multipurpose data science tool has

gone beyond anyone’s imagination. After its first release, Spark-

0.5 in 2013, Spark went through 12 major updates. Currently, the

most recent version is 2.1.0, and it is still the most popular open-

source project of Apache Software Foundation, and the first choice

as big-data engine for cluster-computation[5].

Spark was created for massive parallel computation on large-scale

distributed cluster. Although Spark Core is a derivative of Hadoop

MapReduce framework at basic level, with rigorous optimization

and design changes, it quickly went beyond Hadoop’s performance,

providing faster, more resilient and more convenient computation

experience. Also, with extended modules and libraries like Spark

SQL, Spark Streaming, GraphX, and MLlib, Spark extended its

power to cater different computation needs, and adapts to different

environments for applications in data science.

We hope this paper will bring provide a better understanding of

Spark ecosystem and its key innovations. We will start the paper

with an introduction to Spark ecosystem, and move on to the

interfaces and designs of key modules, including file-system,

resources management, Spark Core and Spark’s extended libraries.

2. Spark Ecosystem
The Spark Ecosystem is also known as the AMPLab’s BDAS

(Berkley Data Analytics Stack). It is a “big-data platform” that

connects - users, algorithms, and machine. It provides a one stop

solution to distributed data storage, resource management, and

interfaces to data processing for data munging and analytics. The

key towards understanding BDAS is its hierarchical structure and

module dependencies. Figure-1 shows that BDAS is a structured

collection of modules with dedicated functionalities. Together they

form a powerful, multi-purpose big data platform.

Figure 1. BDAS, Modules at Bottom Faces Machine, Top faces

User and Specific Jobs.[6]

Different modules at different hierarchy level of the ecosystem are

dedicated to solve different problems for a variety of data

processing & analytics applications. Figure 2 shows how Spark

ecosystem connects user, machines, and algorithms. The key point

is that Spark takes the responsbility of bridging algrithms and

machines that are incharge of exection. At the same time, Spark

provides a smart and user friendly interface at both ends so that

users can work without having to worry about the effectiveness and

robustness of distributed execution.

Figure-2. Spark, User, Algorithms, and Machine

Apart from the low-level interface to work with machines, Spark

offers high-level APIs that provide a user-friendly environment.

Furthermore, there are advanced modules designed for specific

analytical tasks. Table-1 lists some of the most popular Spark

modules in the community. We will only cover Spark SQL in the

following section as a representative of this module system.

mailto:lbai2@ur.rochester.edu
mailto:npatil4@ur.rochester.edu

Table-1. Sample list of Extended Spark Modules [7]

Name Usage

Spark Streaming For real-time streaming Spark applications.

GraphX API for graph computation

MLlib API for Spark machine learning library

Spark R Spark interface in R

Spark SQL SQL engine for structured data

Zepplin Notebook-like interactive Spark interface

GeoSpark Spatial data engine on top of Spark

3. Spark Modules Analysis
As described in the previous section, Spark ecosystem is a

collection of modules that depend on each other, and together they

form a powerful platform. This section will provide an independent

analysis for key modules of Spark. Our primary focus is on Spark

Core and Spark SQL because they not only represent Spark’s

interface to low-level algorithms and abstractions but are also most

frequently used tools by Spark users.

3.1 Storage
The relationship of storage system to a computation engine is like

an armory to an army. Spark relies on distributed file systems to

input data from and output results to persistent hard disks. Spark

provides support to a wide range of storage systems. Its API

supports main-stream file systems like HDFS, HBase, and Amazon

S3. The polymorphism to file systems allows Spark to be adaptive

and easy to deploy without sacrificing performance.

3.2 Resource Management
Resource management to a computation engine is like a

commander to an army. Spark needs resource manager to schedule

jobs and allocate CPU and RAM for computation across multiple

machines. Depending on the file system and the environment,

different choice of resource management may be deployed. For

example, Yarn[8] is most commonly used on HDFS. The BlueHive

cluster at University of Rochester uses SLURM[9].

Table-2 shows spark deployment modes and the corresponding

resource manager used in different environments.

Table 2. Spark Deployment and Environment

Environment Mode Resource Management

Local machine, PC Local None

Small cluster w/o

resource

negotiation

Standalone Spark-Standalone

Big cluster Cluster YARN, Apache Mesos,

SLURM, EC2

3.3 Spark Core
As the name suggests, Spark Core is the most essential part of Spark

ecosystem. Almost every other module is either designed

completely on top of Spark Core or implemented to extend its

functionality. In fact, usually the references to Spark refer to the

basic functionality provided by Spark Core.

The game changing designs of Spark Core contain two major

components:

 An in-memory data abstraction object called Resilient

Distributed Datasets (RDD)

 A scheduler called DAGScheduler.

3.3.1 In-memory Computation
Unlike Hadoop MapReduce, where the result of each map-reduce

operations is written to disk, Spark and its RDD abstraction allows

application to cache the intermediate result of calculation in RAM

as Java object for further computation [1]. This so called in-memory

computation is Spark’s biggest improvement over Hadoop. The in-

memory computation makes consecutive data transformations

easier to code - for the user and faster to implement – for the

machine. Also, it saves the system from huge amount of disk I/O

and serialization/deserialization cost. Benchmark experiments

carried out by the AMPLab suggest that Spark outperforms Hadoop

by up to 20 times in different application scenario [10].

The experiment runs iterative machine learning algorithm with

100GB of data. Hadoop, HadoopBinMem (an in-memory

optimization of Hadoop), and Spark RDD are tested in this scenario.

Results are measured as – “training time cost in seconds”. Figure-

3 shows the performance of each computation framework.

Figure-3. Spark Performance Compared to Hadoop[10]

Figure-3 shows a clear gain of Spark over Hadoop in computation

time. Notice that core Hadoop shows almost constant time cost at

every iteration, and the first iteration is guaranteed to have a disk

output operation to load the data. The time constancy is because for

the remaining iterations, Hadoop also reads data from the disk.

Also, even with in-memory optimizaiton, Hadoop is still slower

than Spark. This phenomenon is explained by the AMPLab as the

overhead of parsing Hadoop file. Although data is stored in

memory, but the format is not desgned for computation tasks by

Hadoop. Extra computation is still needed to convert Hadoop file

to Java object that can be processed with map-reduce. While Spark

directly stores RDD as Java objects, which avoids the overhead.

Other drawbacks of core Hadoop may also influence its

performance. For example, the minimum overhead of Hadoop

software stack.

3.3.2 Resiliency
Another distinct improvement Spark proposed is its fault recovery

strategy, lineage using DAGScheduler.

In Hadoop, when a map-reduce task fails at any node, everything

in the memory is lost for that node and recomputed at another node

i.e. the task begins anew at a different node. The resilience strategy

of Hadoop relies on the recover mechanism of HDFS, which is

essentially making multiple copies of all disk files and storing at

different locations. This is also the reason why Hadoop needs to

save its result at each step. So, when a fault occurs, Hadoop can

load to the closest checkpoint.

However, this resiliency mechanism has several drawbacks. First,

it consumes huge amount of disk I/O and communication

bandwidth when making copies of disk, which is the most

expensive operation in parallel computation. Second, a

computation task success means successful completion of all

subtasks for all nodes. Should any node fail, the whole system must

roll back and re-compute. This not only means that the chance of

failure is multiplied because of the “bound success”, but also means

that correct computation done by other nodes is of no use anymore.

The lineage concept proposed in Spark fixes theese drawbacks in

Hadoop. Lineage is formally defined as logging transformations

used to build a RDD at coarse-grained level. As an application

launches, DAGScheduler process will log the relationship of

previous data and current data at partition level. When a fault at

certain partition occurs, Spark will trace back its lineage, and find

all the actions used to compute results from the faulty partition, and

re-compute this portion only. While the computation results at rest

of the partitions remain as it is. This recovery strategy is more

advanced than Hadoop’s, and provides faster reliable computation

experience.

In a fault-recovery experiment AMPLab carried, performance of

Spark RDD are evaluated under the scenario of a node failure.

Figure 4 shows the iteration time cost at the presence of a scheduled

node failure at 6th iteration.

Figure 4. Performance of Spark Recovery Mechanism [10]

Notice that recovery time at the 6 iteration is less than starting over

the iteration. This is a good indicator that partial reconstruction of

RDD is faster than starting over the job, which is the mechanism

that Hadoop uses.

Besides lineage, there are other resiliency policies used by Spark.

For example, detecting struggling executor and allocating

additional helper/ backup-executors to it, data locality optimization

to reduce communication, and so on.

3.3.3 Generality
Another great feature of Spark RDD is the encapsulation of

parallelism. Although Hadoop provides a rather friendly API for

map-reduce paradigm, its execution contains massive amount of

initialization and declaration. In the official API for Hadoop, to

perform a WordCount, it uses 120 lines of Java code. On the other

hand, Spark RDD API uses only 5 lines of code to achieve the same

functionality making Spark a more suitable tool for iterative

processes which are prevalent in analytics and data science

applications. Besides, Spark offers customized features including

manual in-memory check-point, flexible parallelism by

repartitioning RDD, friendly broadcasting interfaces, and so on.

3.4 An Example of Spark Extended Interface,

Spark-SQL
A compelling advantage of Spark over other distributed systems is

its powerful libraries/modules that are designed to integrate

algorithms or tools to solve specific problems ranging from data

munging to machine learning. One of the most frequently used

modules is Spark SQL, a relational processing engine based on

Spark.

Key features of Spark SQL can be summarized as the follows [2]:

 Support for relational processing on RDD, external data

sources, and structured databases

 Provide high performance using standard DBMS

techniques

 Support for other modules like MLlib, GraphX etc.

To achieve these features, Spark SQL implements two important

APIs - DataFrame, and Catalyst.

3.4.1 DataFrame
Just like DataFrame abstraction in R and Python.pandas, Spark

SQL DataFrame is a collection of rows of data with the same

schema. In addition to the underlying RDD structure, each partition

of the DataFrame keeps an identical structured schema. The schema

is the key for recording relational transformation of the DataFrame.

Also, schema will be lazy-executed and optimized by Catalyst.

This feature is different from R and Python DataFrames, because

their execution of DataFrame is sequential and unoptimized for any

distributed tasks.

Spark SQL DataFrame also provides friendly interface to perform

relational transformations like groupby, filter, join, aggregate, and

so on. Besides that, it supports RDD operations like map, row-wise

transformations and other non-relational operations. Figure-5

shows an example of structured query using Spark SQL.

Figure-5. Count Number of Female Employee by Department

Using Spark SQL

3.4.2 Catalyst
As most DBMS optimize the logic of structured query. Spark SQL

optimizes its execution through a rule-based extensible logic

optimizer called Catalyst.

Catalyst uses functional programming constructs in Scala language

and a tree-like structure to recognize the logic in input query. Then

it uses saved rules to optimize the logic.

The structured query in Figure-5 can be optimized by switching

“where” clause and “join” clause. It will reduce the cross-reference

burden by filtering the table. Simple optimizations like this will be

captured by Catalyst, so user can focus on completing the job

without worrying about optimizing their code [4].

The tree-like logic structure and extensible ability allows Catalyst

to be easily maintained and updated. Figure-6 shows a simple logic

expression x+(1+2) and how it looks like in a Catalyst tree.

Figure-6. Catalyst Tree of x+(1+2) [11]

Each node of the tree is an immutable Scala object that can be

transformed by tree class functions. This design allows the tree to

be manipulated by embedded rules that manipulate nodes and

corresponding logic to the tree. This process is how Catalyst

optimizes an input logic structure. For example, optimization of

expression in Figure-6 will result in the combination of Literal 1

and Literal 2, and the two nodes will be merged. To an additive

result of (1+2=3). By adding cases and rules to the embedded

transform function, Catalyst can be updated and used for

customized scenario [3].

3.4.3 Spark SQL Execution Plan
A general process for how Spark SQL executes a user input can be

represented as Figure-7.

Figure-7. Spark SQL Execution Plan [11]

In the input-phase, Spark SQL takes in the query instruction and

related data. Then, it uses its embedded SQL parser or HiveQL

parser to parse/ covert the query into logical steps. During the

optimization phase, Spark SQL constructs a Catalyst tree for the

input logic, and uses its embedded rules to perform optimization

transforms on the tree. Finally, during the execution phase, logic

plan is transformed to physical plan that carries the code to actual

execution and returns the result to user.

4. Summary
This paper gives an overview of Apache Spark ecosystem, and its

key modules. Starting from its interface to machine, we listed its

supported platforms of storages and resource management. Then

we cover its higher-level interfaces, Spark Core and Spark SQL.

For these two modules, we explain their core design choices, and

provide thorough analysis of the concept and its implementation in

Spark. Comparison to their predecessors is also provided based on

both benchmarked tests and design choices.

In general, the paper provides an elementary-intermediate level

summary to major components of Spark. Although other popular

modules like Spark Streaming, MLlib are not covered, the paper

could be useful to Spark application developer and intermediate

Spark learners.

5. ACKNOWLEDGMENTS
Our thanks to AMPLab and Spark community for their

extraordinary work.

6. REFERENCES
[1] Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing. Matei Zaharia, Mosharaf

Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica.

NSDI 2012. April 2012.

[2] MLlib: Machine Learning in Apache Spark, Xiangrui Meng,

Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai,

Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael

J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet

Talwalkar.

[3] Spark SQL: Relational Data Processing in Spark. Michael

Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies

Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan,

Michael J. Franklin, Ali Ghodsi, Matei Zaharia.

[4] High Performance Spark Best Practices for Scaling and

Optimizing Apache Spark; Oreilly & Associates Inc, 2016.

[5] Karau, H. Learning Spark: O'Reilly: Sebastopol, 2015.

[6] BDAS, the Berkeley Data Analytics Stack
https://amplab.cs.berkeley.edu/software

[7] Spark packages: https://spark-packages.org/

[8] YARN, Apache Hadoop YARN:

https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-

yarn-site/index.html

[9] SLURM, Cluster management:

https://slurm.schedmd.com

[10] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauley, M., Franklin, M.J., Shenker, S. and Stoica, I.,

2012, April. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing.

[11] Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley,

J.K., Meng, X., Kaftan, T., Franklin, M.J., Ghodsi, A. and

Zaharia, M., 2015, May. Spark sql: Relational data

processing in spar

http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://www.jmlr.org/papers/volume17/15-237/15-237.pdf
http://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf
https://amplab.cs.berkeley.edu/software
https://spark-packages.org/
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/index.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/index.html
https://slurm.schedmd.com/

